From Fair Games to Fair Prices: Martingale Theory in Modern Finance

Motivation: The idea of a "fair game" is central to both probability theory and finance. In the realm of finance, fairness translates to the absence of arbitrage opportunities. Martingale theory provides a mathematical framework to describe this principle. Investment Management and Stochastic Proccesses were two particularly interesting courses I have taken @ Penn. I thought I'd connect some dots of some of the material I have learned and show a very basic introduction to the relationship between these topics.

Martingales 101

Martingales are stochastic processes where the expected value of the next observation is equal to the current value, given all past observations. Intuitively, it represents a "fair game" where future winnings are unpredictable given the current state.

Definition: A stochastic process Xt is a martingale if: E[Xt+1Ft]=Xt where Ft represents the information up to time t.
Additionally, FT can be represented as the collection X0,X1,,XT, encapsulating all past states.

Conditions for Martingales

For a stochastic process Xt to be a martingale, the following conditions must be satisfied:

  1. E[|Xt|]< for all t0 (finite expectation).
  2. E[Xt+1Ft]=Xt (martingale property).
  3. Xt is Ft-adapted (depends only on past and present, not future).

Simple Example: Mt=St2σ2t4

We now consider the process Mt=St2σ2t4, where St represents a discrete random walk or a simple Brownian motion approximation. Let us verify the martingale property by computing E[Mt+1Ft].

  1. Step 1: Substitute Mt+1 in terms of St+1: Mt+1=St+12σ2(t+1)4. Using St+1=St+Xt+1, where Xt+1 is an independent random increment with E[Xt+1Ft]=0: Mt+1=(St+Xt+1)2σ2(t+1)4.
  2. Step 2: Expand (St+Xt+1)2: Mt+1=St2+2StXt+1+Xt+12σ2(t+1)4. Taking the conditional expectation given Ft: E[Mt+1Ft]=E[St2+2StXt+1+Xt+12Ft]σ2(t+1)4.
  3. Step 3: Simplify the expectation: Since E[Xt+1Ft]=0: E[Mt+1Ft]=St2+E[Xt+12Ft]σ2(t+1)4. The variance of Xt+1 is σ2, so E[Xt+12Ft]=σ2: E[Mt+1Ft]=St2+σ2σ2(t+1)4.
  4. Step 4: Simplify further: E[Mt+1Ft]=St2σ2t4. This equals Mt, confirming the martingale property.

By substituting the definitions of St+1 and applying the properties of conditional expectation, we verified that Mt=St2σ2t4 satisfies the martingale property.

Mini Intro to Put-Call Parity: An Arbitrage Example

Setup

Put-Call Parity (with r=0) states:

CP=SK Substituting values: CP=1010=0C=P

This says the call price (C) should equal the put price (P).

The Mismatch

Suppose, in the market, the call is trading at $3 and the put is trading at $1. Clearly:

CP=31=20

The put-call parity says it should be 0. This discrepancy indicates a potential arbitrage.

Constructing the Arbitrage

We outline a classic arbitrage strategy to profit immediately and lock in a risk-free payoff at expiration:

Net Cash Flow at the Start

Total Initial Outlay:

101+3=8

You pay $8 net today to set this up.

What Happens at Expiration?

1) If Stock Price Sexp>$10:

Net Cash Flow:

$10$8=$2 (risk-free profit)
2) If Stock Price Sexp<$10:

Net Cash Flow:

$10$8=$2 (risk-free profit)

Why This Is Arbitrage

In both outcomes, you end up with a +$2 profit. You never lose money and are not exposed to where the stock finally trades. This is the classic definition of risk-free arbitrage.

Key Takeaway: When the market prices of calls and puts deviate from the relationship: CP=SKerT savvy traders can construct risk-free trades to lock in guaranteed profit. This forces the market to correct the prices, restoring put-call parity and eliminating arbitrage.

Recall the Execution Payoffs of Calls and Puts

Call Option Payoff = Max(0,StK), where St is the strike price at some time t.

Put Option Payoff = Max(0,KSt)

Expanding the Call Option Formula

Start with the given payoff formula:

C0=erTEQ[Max(STK,0)]

Here:

The term Max(STK,0) represents the call option payoff at maturity, i.e., the value STK if ST>K, or 0 otherwise.

Expanding the Max Function

Recall that the max function can be written using the indicator function 1{ST>K}, which is 1 when ST>K and 0 otherwise:

Max(STK,0)=(STK)1{ST>K}

Substituting this into the formula for C0:

C0=erTEQ[(STK)1{ST>K}]

Separating the Expectation

Using the linearity of expectation, split the expression:

EQ[(STK)1{ST>K}]=EQ[ST1{ST>K}]EQ[K1{ST>K}]

Substituting back, we get:

C0=erTEQ[ST1{ST>K}]erTKQ(ST>K)

Interpretation

The term EQ[ST1{ST>K}] represents the expected value of ST under Q, conditioned on ST>K, multiplied by the probability of ST>K:

EQ[ST1{ST>K}]=KSTfQ(ST)dST

Where fQ(ST) is the probability density of ST under Q.

Expressing Call and Put Prices Under the Risk-Neutral Measure

From the proposition, the call price C0 is given by:

C0=erTEQ[ST1{ST>K}]erTKQ(ST>K)

Similarly, the put price P0 is given by:

P0=erTEQ[K1{STK}]erTEQ[ST1{STK}]

Substitute Into the Put-Call Parity Formula

Substituting the expressions for C0 and P0 into the parity formula:

(erTEQ[ST1{ST>K}]erTKQ(ST>K)) (erTEQ[K1{STK}]erTEQ[ST1{STK}])=S0KerT
Click to see work expanded

Distribute the Negative Sign in the Put Term:

Expand the negative sign over P0:

C0P0=erTEQ[ST1{ST>K}]erTKQ(ST>K)erTEQ[K1{STK}]+erTEQ[ST1{STK}]

Simplify to:

C0P0=erTEQ[ST1{ST>K}]+erTEQ[ST1{STK}]erTKQ(ST>K)erTEQ[K1{STK}]

ST:

Notice that the first two terms involve ST over disjoint regions ST>K and STK:

erTEQ[ST1{ST>K}]+erTEQ[ST1{STK}]=erTEQ[ST]

So now the expression becomes:

C0P0=erTEQ[ST]erTKQ(ST>K)erTEQ[K1{STK}]

Combine Terms for K:

Now focus on the K-related terms:

erTKQ(ST>K)erTEQ[K1{STK}]

Factor out erTK:

erTK(Q(ST>K)+Q(STK))

Since Q(ST>K)+Q(STK)=1, this simplifies to:

erTK

Simplify Expectations

After expanding and simplifying, you observe that the terms involving ST and K under the probabilities 1{ST>K} and 1{STK} will combine into the full expectation:

erTEQ[ST]erTK=S0KerT

Rearrange and Focus on the Martingale Property

The equality implies:

S0=erTEQ[ST]

This is exactly the definition of the martingale property: The current stock price S0 equals the discounted expected future stock price erTEQ[ST], showing that the discounted stock price ertSt is a martingale under the risk-neutral measure Q.

Final Remarks: Martingales, (Sub)Supermartingales, and Arbitrage

Putting everything together, the condition S0=erTEQ[ST] shows that the discounted stock price ertSt is a true martingale under the risk-neutral measure Q. If this condition fails—for instance, if calls or puts are mispriced relative to put-call parity—then the discounted price process (or the portfolio you create using those instruments) can exhibit supermartingale or submartingale behavior instead.

Why does that matter? If a discounted price process is a supermartingale, it tends to drift downward in expectation (after discounting), which signals a profitable short-selling opportunity for traders. Conversely, if it is a submartingale, it tends to drift upward, making it advantageous to hold a long position. Either scenario violates the “fair game” intuition behind martingales and thus uncovers arbitrage opportunities.

Submartingales, Supermartingales, and Their Real Analysis Foundations

In our discussion of no-arbitrage and put-call parity, we relied on the condition S0=erTEQ[ST], which ensures that the discounted stock price process (ertSt) is a martingale under the risk-neutral measure Q. But what happens if this condition is violated? It means (ertSt) can become a submartingale or supermartingale, thereby hinting at potential arbitrage opportunities. Below, we make these notions precise.

Definition (Martingale/Submartingale/Supermartingale):

Let (Xt)t0 be a stochastic process adapted to a filtration (Ft)t0 on a probability space (Ω,F,P). We say Xt is:

The intuition is that a submartingale “tends to move upwards” in expectation (even after conditioning on the present), while a supermartingale “tends to move downwards.” A martingale is precisely balanced between these two.

Doob’s Decomposition: Linking (Sub)Supermartingales to Martingales

A powerful result from real analysis and probability theory—Doob’s Decomposition Theorem—states that any submartingale Yt can be written uniquely as Yt=Mt+At, where Mt is a martingale, and At is an almost surely nondecreasing, predictable process with A0=0. (Intuitively, “predictable” means At is determined by the past and present, not the future.) Similarly, for a supermartingale Yt, one can write Yt=MtBt, where Bt is a nondecreasing predictable process.

This decomposition highlights that a submartingale differs from a martingale by an “increasing drift” component At, while a supermartingale has a “decreasing drift” component Bt. In finance terms:

Real Analysis Ingredients: Fatou’s Lemma, Dominated Convergence, etc.

The construction and proof of these (sub)supermartingale decompositions—and the fundamental theorems linking no-arbitrage to martingale pricing—rely heavily on measure-theoretic tools such as:

Click to see how these Real Analysis concepts are applied

1) Fatou’s Lemma in Pricing and Risk Measures

Fatou’s Lemma states that for any sequence of nonnegative measurable functions {fn}: E[lim infnfn]lim infnE[fn]. In finance, we often deal with nonnegative payoff processes (e.g., call and put payoffs). When analyzing limit behaviors—such as the limiting price of an option sequence or the payoff under extreme conditions—Fatou’s Lemma provides a lower bound on expected values. This is essential when proving, for instance, that certain limit operations preserve no-arbitrage or when showing the existence of a fair pricing measure.

2) Dominated Convergence Theorem (DCT) in Option Pricing

The Dominated Convergence Theorem allows us to interchange the limit and the expectation operator, provided there is a dominating integrable function. In finance:

3) Optional Stopping and Martingale Techniques

The Optional Stopping Theorem (OST) says that for a suitable stopping time τ (with integrability/boundedness conditions) and a martingale {Mt}, E[Mτ]=E[M0]. While OST itself is often discussed in probability textbooks, applying it in a rigorous measure-theoretic setting also depends on real-analysis results like dominated or monotone convergence to ensure conditions on integrability are met. For instance:

4) Monotone Convergence in Sub-/Supermartingale Analysis

The Monotone Convergence Theorem helps when dealing with a nondecreasing sequence of random variables. In the analysis of submartingales, for example, we often take increasing partial sums or truncated processes Ytn=min(Yt,n). As n, these truncated processes converge monotonically to Yt. MCT then enables us to pass the limit inside the expectation: E[limnYtn]=limnE[Ytn]. In finance, submartingales can correspond to processes that exhibit an “upward drift” after discounting—potentially pointing to mispricing that invites arbitrage. MCT ensures we handle these partial sums or truncated payoffs correctly when we prove or disprove no-arbitrage in limiting cases.

Putting It All Together in Finance

In short, these measure-theoretic pillars—Fatou’s Lemma, Dominated Convergence, Monotone Convergence, and Optional Stopping—each play a vital role in guaranteeing that our mathematical manipulations, limits, and expectation interchanges are justified. They ensure that:

Arbitrage Implications

Translating these results back to finance, no-arbitrage precisely requires that the discounted price process (ertSt) is a true martingale under some equivalent measure Q. If, instead, that discounted process were a sub- or supermartingale, it would imply EQ[er(t+1)St+1Ft]>ertSt(submartingale) or EQ[er(t+1)St+1Ft]<ertSt(supermartingale). Either case reveals a profit opportunity (by either going long or short accordingly), thus signaling arbitrage.

In essence, put-call parity violations are a simpler, concrete manifestation of such sub/supermartingale behavior. When put and call prices deviate from CP=S0KerT, one can construct a portfolio that yields a guaranteed profit in all scenarios—exactly the hallmark of arbitrage. Hence, the market quickly corrects the mispricing, restoring the martingale property of discounted asset prices.

Conclusion: Maintaining the martingale condition (under the appropriate measure) is equivalent to ruling out arbitrage. The submartingale or supermartingale “drift” components capture systematic opportunities for profit (or for hedging) that real-world markets cannot sustain for long. Finance can have some pretty cool mathemtical derivations inspired from Statisitcs and Physics. Concepts like Brownian motion and stochastic processes borrow heavily from physics, particularly in modeling random phenomena such as particle diffusion.

In practice, as soon as an arbitrage strategy is identified (for example, by finding a mismatch in put-call parity), traders will exploit it, driving prices back to levels consistent with the martingale (no-arbitrage) condition. Hence, the absence of arbitrage in well-functioning markets is precisely what enforces the equality S0=erTEQ[ST] and preserves the martingale property of discounted asset prices under the risk-neutral measure.